Neueste wissenschaftliche Publikation von HPG

During firefighting, thermoregulation is challenged due to a combination of harsh environmental conditions, high metabolic rates and personal protective clothing (PPC). Consequently, investigations of thermoregulation in firefighters should not only consider climate and exercise intensity, but technical properties of textiles too. Therefore, laboratory textile performance simulations may provide additional insights into textile-dependent thermoregulatory responses to exercise. In order to investigate the thermo-physiological relevance of textile properties and to test how different garments affect thermoregulation at different exercise intensities, we analyzed the results of a standard laboratory test and human subject trials by relating functional properties of textiles to thermo-physiological responses.

Ten professional, healthy, male firefighters (age: 43 ± 6 y, weight: 84.3 ± 10.3kg, height: 1.79 ± 0.05m) performed low and moderate intensity exercise wearing garments previously evaluated with a sweating torso system to characterize thermal and evaporative properties.

Functional properties of PPC and the control garment differed markedly. Consequently, skin temperature was higher using PPC at both exercise intensities (low: 36.27 ± 0.32 versus 36.75 ± 0.15℃, P < 0.05; moderate: 36.53 ± 0.34 versus 37.18 ± 0.23℃, P < 0.001), while core body temperature was only higher for PPC at moderate (37.54 ± 0.24 versus 37.83 ± 0.27℃, P < 0.05), but not low-intensity exercise (37.26 ± 0.21 versus 37.21 ± 0.19, P = 0.685).

Differences in thermal and evaporative properties between textiles are reflected in thermo-physiological responses during human subject trials. However, an appropriate exercise intensity has to be chosen in order to challenge textile performance during exercise tests.